Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.
Введем обозначения как показано на рисунке.
AB и BC - катеты, AC -
гипотенуза.
По
теореме Пифагора:
AC2=AB2+BC2
AC2=122+162
AC2=144+256
AC2=400
AC=√400=20
Ответ: 20
Поделитесь решением
Присоединяйтесь к нам...
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=12, BD=20, AB=7. Найдите DO.
В трапеции ABCD AB=CD, AC=AD и ∠ABC=95°. Найдите угол CAD. Ответ дайте в градусах.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 60, тангенс угла BAC равен 5/12. Найдите радиус окружности, вписанной в треугольник ABC.
Найдите площадь треугольника, изображённого на рисунке.
Высота равностороннего треугольника равна
15√
Комментарии: