ОГЭ, Математика. Геометрия: Задача №F4E03B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1 (Предложил пользователь Людмила)
По второму свойству вписанной в четырехугольник окружности:
AB+CD=BC+AD
7+14=10+AD
AD=7+14-10=11
Ответ: 11


Вариант №2
Проведем отрезки из центра окружности к точкам касания со сторонами четырехугольника.
AB и AD - это касательные к окружности.
Следовательно, по второму свойству касательной:
AE=AF, обозначим эти отрезки как "а".
Аналогичная ситуация и с остальными касательными, поэтому обозначим соответствующие отрезки как "b", "c", "d", как показано на рисунке.
Получается:
a+b=AB=7
b+c=BC=10
c+d=CD=14
А нам надо найти a+d.
Вычтем из первого равенства второе, чтобы "избавиться" от b:
(a+b)-(b+c)=7=-14
a+b-b-c=7-10
a-c=-3
А теперь прибавим третье равенство, чтобы "избавиться" от с:
(a-c)+(c+d)=-3+14
a-c+c+d=11
a+d=11 - это и есть AD.
Ответ: 11

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4B9273

Сторона ромба равна 60, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №049FC2

Четырехугольник ABCD вписан в окружность. Угол ABC равен 92°, угол CAD равен 60°. Найдите угол ABD. Ответ дайте в градусах.



Задача №2921C7

Площадь прямоугольного треугольника равна 24503/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №FFC91D

Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите AB, если BC=28.



Задача №08369A

Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=32.

Комментарии:


(2017-05-14 20:24:54) Администратор: Людмила, спасибо большое за Ваше решение. Опубликовано от Вашего имени.
(2017-05-13 18:58:46) Людмила: Можно использовать теорему о том, что окружность можно вписать в четырехугольник тогда и только тогда, когда суммы его противоположных сторон равны. AB+CD=BC+AD, 7+14=10+AD

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика