Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).
По условию /BAC=70°, этот угол является
вписанным углом и равен половине градусной меры дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 70°*2=140°.
/BOC является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /BOC=140°.
Ответ: /BOC=140°.
Поделитесь решением
Присоединяйтесь к нам...
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 5 м?
Радиус окружности, описанной около равностороннего треугольника, равен 10. Найдите высоту этого треугольника.
Сторона квадрата равна 4√2. Найдите радиус окружности, описанной около этого квадрата.
Центральный угол AOB опирается на хорду АВ длиной 5. При этом угол ОАВ равен 60°. Найдите радиус окружности.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.
Комментарии: