ОГЭ, Математика. Геометрия: Задача №026D2D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №026D2D

Задача №427 из 1084
Условие задачи:

Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.

Решение задачи:

BC=CD/2=CF (по условию задачи)
Следовательно треугольник BCF - равнобедренный.
По свойству равнобедренного треугольника:
∠CFB=∠CBF
∠CFB=∠ABF (так как это накрест-лежащие углы)
Получается, что ∠CBF=∠ABF
Следовательно, BF - биссектриса.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №66BA84

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.



Задача №AEA79E

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника BKP к площади треугольника AMK.



Задача №0AAD0E

Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=15° и ∠OAB=8°. Найдите угол BCO. Ответ дайте в градусах.



Задача №07F434

В треугольнике ABC угол C равен 90°, sinA=0,75, AC=7. Найдите AB.



Задача №025C60

Медиана равностороннего треугольника равна 93. Найдите его сторону.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика