Сторона основания правильной треугольной призмы ABCA1B1C1 равна 2, а высота этой призмы равна 4√3. Найдите объём призмы ABCA1B1C1.
Объем призмы вычисляется перемножением площади основания призмы на высоту.
Найдем площадь основания.
По
определению правильной призмы, в основании лежит правильный (т.е.
равносторонний) треугольник.
По
пятому свойству равностороннего треугольника:
S=a2√3/4=22√3/4=4√3/4=√3
Зная площадь основания и высоту, вычисляем объем призмы:
V=S*h=√3*4√3=4(√3)2=4*3=12
Ответ: 12
Поделитесь решением
Присоединяйтесь к нам...
Пожарную лестницу длиной 10 м приставили к окну дома. Нижний конец лестницы отстоит от стены на 6 м. На какой высоте расположено окно? Ответ дайте в метрах.
В трапеции ABCD известно, что AB=CD, ∠BDA=40° и ∠BDC=30°. Найдите угол ABD. Ответ дайте в градусах.
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 124°. Найдите угол ACB. Ответ дайте в градусах.
В трапеции ABCD известно, что AB=CD, ∠BDA=40° и ∠BDC=30°. Найдите угол ABD. Ответ дайте в градусах.
В основании прямой призмы лежит прямоугольный треугольник, один из катетов которого равен 3,
а гипотенуза равна √
Комментарии: