Постройте график функции
y=x|x|-|x|-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Данная функция содержит
модуль, следовательно ее нужно разложить на две функции:
x*x-x-3x, при x≥0
x*(-x)-(-x)-3x, при x<0
x2-x-3x, при x≥0
-x2+x-3x, при x<0
x2-4x, при x≥0
-x2-2x, при x<0
Рассмотрим каждую подфункцию:
1) y=x2-4x, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | -3 | -4 | -3 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 1 | 0 | -3 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2-8x-4|x-3|+15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В)
ФОРМУЛЫ
1) y=-(2/x) 2) y=x2-2
3) y=2x
В таблице под каждой буквой укажите соответствующий номер.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Наименьшее значение функции равно -8
2) f(-4)>f(1)
3) f(x)<0 при -4<x<2
Постройте график функции y=|x|(x+1)-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между функциями и их графиками.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | |||
А) y=3x Б) y=-3x В) y=(1/3)x |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Комментарии: