Постройте график функции y=|x|(x+1)-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x(x+1)-3x, при x≥0
y=(-x)(x+1)-3x, при x<0
y=x2+x-3x, при x≥0
y=-x2-x-3x, при x<0
y=x2-2x, при x≥0
y=-x2-4x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y=x2-2x, при x≥0
Графиком данной подфункции является парабола. Ветви этой параболы направлены вверх, так как коэффициент при x2 положительный.
Найдем корни уравнения x2-2x=0
x(x-2)=0
Произведение равно нулю, когда один из множителей равен нулю, поэтому рассмотрим два случая:
1) x1=0
2) x-2=0
x2=2
Построим график по точкам:
X | 0 | 1 | 2 | 3 |
Y | 0 | -1 | 0 | 3 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | 3 | 4 | 3 | 0 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции y=x2-|4x+3| и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Постройте график функции
-x2, если |x|≤1
-1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Постройте график функции Определите, при каких значениях m прямая y=m не имеет с графиком общих точек.
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наибольшую температуру воздуха 24 января. Ответ дайте в градусах Цельсия.
Комментарии: