Постройте график функции y=x2-4|x|+2x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-4x+2x, при x≥0
x2-4(-x)+2x, при x<0
x2-2x, при x≥0
x2+6x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-2x, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | -1 | 0 | 3 |
X | 0 | -1 | -2 | -3 | -4 | -5 |
Y | 0 | -5 | -8 | -9 | -8 | -5 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Постройте график функции y=|x|(x+1)-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке показано, как изменялась температура воздуха на протяжении одних суток. По горизонтали указано время суток, по вертикали — значение температуры в градусах Цельсия. Найдите разность между наибольшим и наименьшим значениями температуры в первой половине суток. Ответ дайте в градусах Цельсия.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция возрастает на промежутке [2;+∞)
2) ƒ(x)>0 при -1<x<5
3) ƒ(0)<ƒ(4)
Установите соответствие между функциями и их графиками.
ФУНКЦИИ | ГРАФИКИ | |
А) y=x2+4x+1 Б) y=x2-4x+1 В) y=-x2+4x-1 |
1) ![]() |
2) ![]() |
3) ![]() |
4) ![]() |
Комментарии: