Постройте график функции y=x2-3|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
x2-3x-x, при x≥0
x2-3(-x)-x, при x<0
x2-4x, при x≥0
x2+2x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=x2-4x, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | -3 | -4 | -3 |
X | 0 | -1 | -2 | -3 |
Y | 0 | -1 | 0 | 3 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0
Б) k<0, b>0
В) k>0, b<0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=4x имеет с графиком ровно одну общую точку.
Найдите p и постройте график функции y=x2+p, если известно, что прямая y=4x имеет с графиком ровно одну общую точку.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке | 1) [2;5] 2) [0;1] 3) [-3;-1] 4) [-2;2] |
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Комментарии: