Постройте график функции и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
Теперь надо построить график каждой подфункции в его границах и объединить их.
1) , при х≥0.
Напишем Область Допустимых Значений (ОДЗ).
Так как знаменатель не может равняться нулю, то x-2x2≠0 Следовательно:
x(1-2x)≠0
x1≠0
x2≠1/2
График представляет из себя гиперболу, отметим несколько точек:
X | 0,5 | 1 | 2 |
Y | -2 | -1 | -0,5 |
X | -0,5 | -1 | -2 |
Y | -2 | -1 | -0,5 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Наибольшее значение функции равно 9
2) f(0)>f(1)
3) f(x)>0 при x<0
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=-x2-6,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=x2+4 2) y=-2x+4 3) y=-4/x |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: