Постройте график функции и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
Теперь надо построить график каждой подфункции в его границах и объединить их.
1) , при х≥0.
Напишем Область Допустимых Значений (ОДЗ).
Так как знаменатель не может равняться нулю, то x-2x2≠0 Следовательно:
x(1-2x)≠0
x1≠0
x2≠1/2
График представляет из себя гиперболу, отметим несколько точек:
X | 0,5 | 1 | 2 |
Y | -2 | -1 | -0,5 |
X | -0,5 | -1 | -2 |
Y | -2 | -1 | -0,5 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=|x|(x+1)-6x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А) y=-2x+4
Б) y=2x-4
В) y=2x+4
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между знаками коэффициентов a и c и графиками функций.
КОЭФФИЦИЕНТЫ
А) a>0, c<0
Б) a>0, c>0
В) a<0, c>0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
На графике показано изменение температуры в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Определите по графику,
через сколько минут с момента запуска двигатель нагреется до 40°C.
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии: