Найдите все значения k, при каждом из которых прямая y=kx имеет с графиком функции y=x2+6,25 ровно одну общую точку. Постройте этот график и все такие прямые.
Две функции имеют точку пересечения, это означает, что графики обеих функций имеют общую точку. Следовательно, надо составить систему и решить ее:
y=x2+6,25
y=kx
kx=x2+6,25
0=x2-kx+6,25
Найдем корни этого
уравнения:
D=(-k)2-4*1*6,25=k2-25
В условии сказано, что точка пересечения только одна, следовательно корень уравнения должен быть только один. Это условие выполняется, когда дискриминант равен нулю:
D=k2-25=0
k2=25
k1=5
k2=-5
Получаем функции:
y=x2+6,25
y=5x
y=-5x
построим графики по точкам:
y=x2+6,25 (красный)
X | -2 | -1 | 0 | 1 | 2 |
Y | 10,25 | 7,25 | 6,25 | 7,25 | 10,25 |
X | -1 | 0 | 1 |
Y | -5 | 0 | 5 |
X | -1 | 0 | 1 |
Y | 5 | 0 | -5 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=|x|(x+1)-6x и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке показано, как изменялась температура воздуха на протяжении одних суток. По горизонтали указано время суток, по вертикали — значение температуры в градусах Цельсия. Найдите разность между наибольшим и наименьшим значениями температуры во второй половине суток. Ответ дайте в градусах Цельсия.
Постройте график функции
x2, если |x|≤1
1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Постройте график функции и определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии: