На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке |
1) [0; 2] 2) [2; 5] 3) [4; 7] 4) [1; 7] |
Функция возрастает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)>y(x2).
И наоборот, функция убывает на неком промежутке, если на этом промежутке для любых x1>x2, верно, что y(x1)<y(x2).
Данная функция возрастает на промежутке [3,+∞), следовательно и на промежутке [4; 7] тоже возрастает.
Функция убывает на промежутке (-∞; 3), следовательно и на промежутке [0; 2] тоже убывает.
Остальные промежутки не подходят.
Ответ: А)-3), Б)-1)
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции
x2-6x+11 при x≥2
x+1 при x<2
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Андрей и Иван соревновались в 50-метровом бассейне на дистанции 100 м. Графики их заплывов показаны на рисунке. По горизонтальной оси отложено время в секундах, а по вертикальной — расстояние пловца от старта в метрах. На сколько секунд обогнал соперника на первой половине дистанции пловец, проплывший её быстрее?
Постройте график функции
-x2-2x+2, если x≥-3,
-x-4, если x<-3,
и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: