Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 3 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 9 км/ч?
Обозначим:
S - расстояние от лагеря до места прогулки.
t1 - время движения лодки против течения.
t2 - время движения лодки по течению.
Скорость лодки против течения равна 9-3=6 км/ч, по течению - 9+3=12 км/ч.
Составим уравнения:
движение лодки против течения:
S=6t1
движение лодки по течению:
S=12t2
время в поездке:
6=t1+t2+3
t1=3-t2
Получается, что:
S=6(3-t2)
Так как путь против течения равен пути по течению, получаем уравнение:
6(3-t2)=12t2
18-6t2=12t2
18=18t2
t2=1
Подставляем во второе уравнение:
S=12t2=12*1=12 км.
Ответ: 12
Поделитесь решением
Присоединяйтесь к нам...
Найдите наибольшее значение x, удовлетворяющее системе неравенств
На координатной прямой отмечено число a.
Найдите наименьшее из чисел a2, a3, a4.
1) a2
2) a3
3) a4
4) не хватает данных для ответа
Туристы проплыли на лодке от лагеря некоторое расстояние вверх по течению реки, затем причалили к берегу и, погуляв 2 часа, вернулись обратно через 6 часов от начала путешествия. На какое расстояние от лагеря они отплыли, если скорость течения реки равна 3 км/ч, а собственная скорость лодки 6 км/ч?
Решите уравнение -4+x/5=(x+4)/2.
Для приготовления фарша взяли говядину и свинину в отношении 13:12. Сколько процентов фарша составляет говядина?
Комментарии: