Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Запишем Область Допустимых Значений (ОДЗ).
Так как на ноль делить нельзя, то x2-x-2≠0
Найдем такие х, для этого
решим
квадратное уравнение x2-x-2=0
D=(-1)2-4*1*(-2)=1+8=9
x1=(-(-1)+3)/(2*1)=4/2=2
x2=(-(-1)-3)/(2*1)=-2/2=-1
Правильно будет написать, что x≠2 и x≠-1
Упростим данную функцию, для этого разложим все 3 квадратных уравнения на множители. Каждое квадратное уравнение (если у него есть корни) можно представить в виде (x-x1)(x-x2), где x1 и x2 - корни этого уравнения.
Знаменатель мы уже сейчас можем разложить на множители:
x2-x-2=(x-2)(x-(-1))=(x-2)(x+1)
Разложим x2-3x+2
D=(-3)2-4*1*2=9-8=1
x1=(-(-3)+1)/(2*1)=4/2=2
x2=(-(-3)-1)/(2*1)=2/2=1
Получаем:
x2-3x+2=(x-2)(x-1)
Разложим x2+3x+2
D=32-4*1*2=9-8=1
x1=(-3+1)/(2*1)=-2/2=-1
x2=(-3-1)/(2*1)=-4/2=-2
x2+3x+2=(x-(-1))(x-(-2))=(x+1)(x+2)
В итоге получаем:
Построим график (красный) этой функции по точкам:
X | -3 | -2 | -1 | 0 | 1 | 2 |
Y | 4 | 0 | -2 | -2 | 0 | 4 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции
Определите, при каких значениях k прямая y=kx не имеет с графиком общих точек.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-3 2) y=x-3 3) y=-3x 4) y=3x |
А) | Б) | В) |
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) f(x)<0 при -1<x<5
2) Функция возрастает на промежутке [2; +∞)
3) Наименьшее значение функции равно -5
Постройте график функции
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k>0, b<0 Б) k>0, b>0 В) k<0, b>0 |
1) | 2) | 3) |
Комментарии: