Задача №22 из 42 |
Решите уравнение x2+8=6x.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
x2+8=6x
x2+8-6x=0
x2-6x+8=0
Решим это квадратное уравнение через дискриминант:
D=(-6)2-4*1*8=36-32=4
x1=(-(-6)+2)/(2*1)=(6+2)/2=4
x2=(-(-6)-2)/(2*1)=(6-2)/2=2
Наибольший корень x=4.
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
В корзине лежит 40 грибов: рыжики и грузди. Известно, что среди любых 17 грибов имеется хотя бы один рыжик, а среди любых 25 грибов хотя бы один груздь. Сколько рыжиков в корзине?
На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 9 кусков, если по жёлтым — 12 кусков, а если по зелёным — 8 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов?
Список заданий викторины состоял из 33 вопросов. За каждый правильный ответ ученик получал 7 очков, за неправильный ответ с него списывали 12 очков, а при отсутствии ответа давали 0 очков. Сколько верных ответов дал ученик, набравший 70 очков, если известно, что по крайней мере один раз он ошибся?
Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок, делая первый прыжок из начала координат. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, совершив ровно 8 прыжков?
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| А) (x-1)2(x-4)<0 | 1) (-∞; 1)∪(4; +∞) |
Б) ![]() |
2) (1; 4)∪(4; +∞) |
| В) (x-1)(x-4)<0 | 3) (-∞; 1)∪(1; 4) |
Г) ![]() |
4) (1; 4) |
Комментарии: