Задача №22 из 42 |
Решите уравнение x2+8=6x.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
x2+8=6x
x2+8-6x=0
x2-6x+8=0
Решим это квадратное уравнение через дискриминант:
D=(-6)2-4*1*8=36-32=4
x1=(-(-6)+2)/(2*1)=(6+2)/2=4
x2=(-(-6)-2)/(2*1)=(6-2)/2=2
Наибольший корень x=4.
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
На палке отмечены поперечные линии красного, жёлтого и зелёного цвета. Если распилить палку по красным линиям, получится 9 кусков, если по жёлтым — 12 кусков, а если по зелёным — 8 кусков. Сколько кусков получится, если распилить палку по линиям всех трёх цветов?
Решите уравнение x2+6=5x.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
На координатной прямой отмечены точки A, B, C и D.
Каждой точке соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.
ТОЧКИ | ЧИСЛА |
A | 1) √11+√3 |
B | 2) √11*√3 |
C | 3) √11-√3 |
D | 4) (√3)3-2 |
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
НЕРАВЕНСТВА | РЕШЕНИЯ |
А) (x-1)2(x-4)<0 | 1) (-∞; 1)∪(4; +∞) |
Б) ![]() |
2) (1; 4)∪(4; +∞) |
В) (x-1)(x-4)<0 | 3) (-∞; 1)∪(1; 4) |
Г) ![]() |
4) (1; 4) |
Маша младше Алисы на год, но старше Кати на два года. Выберите утверждения, которые верны при указанных условиях.
1) Любая девочка, помимо указанных, которая старше Кати, также старше Маши.
2) Среди указанных девочек нет никого младше Кати.
3) Любая девочка, помимо указанных, которая старше Маши, также старше Кати.
4) Алиса и Катя одного возраста.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Комментарии: