Укажите неравенство, решение которого изображено на рисунке.
1) x2-6x<0
2) x2-6x>0
3) x2-36<0
4) x2-36>0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен единице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 2) будут совпадать, т.к. это одинаковые функции.
- графики парабол 3) и 4) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть 0 и 6.
Решим уравнение x2-6x=0
x(x-6)=0
Произведение равно нулю, когда один из множителей равен нулю. Поэтому рассмотрим два случая:
1) x1=0
2) x-6=0 => x2=6
Неравенства 1) и 2), судя по корням, подходят.
Решим уравнение x2-36=0
x2-62=0
Воспользуемся формулой разность квадратов:
(x-6)(x+6)=0
Опять, произведение равно нулю, когда один из множителей равен нулю. Поэтому рассмотрим два случая:
1) x-6=0 => x1=6
2) x+6=0 => x2=-6
Корни не подходят под рисунок, значит неравенства 3) и 4) не подходят.
Посмотрим на рисунок, в условии показан диапазон, когда график функции выше оси Х, т.е. больше нуля, следовательно, подходит неравенство x2-6x>0
Ответ: 2)
Поделитесь решением
Присоединяйтесь к нам...
На координатной прямой отмечены числа а и с.
Какое из следующих утверждений неверно?
1) a-c>0
2) -3<a+1<-2
3) a/c<0
4) -c>-1
Известно, что число m отрицательное. На каком из рисунков точки с координатами 0, m, 2m, m2 расположены на координатной прямой в правильном порядке?
1)
2)
3)
4)
Две прямые пересекаются в точке C (см. рис.). Найдите абсциссу точки C.
Одно из чисел 4/7; 6/7; 8/7; 13/7 отмечено на прямой точкой.
Какое это число?
1) 4/7
2) 6/7
3) 8/7
4) 13/7
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b<0
3) k>0, b>0
Комментарии: