Укажите неравенство, решение которого изображено на рисунке.
1) x2-6x<0
2) x2-6x>0
3) x2-36<0
4) x2-36>0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен единице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 2) будут совпадать, т.к. это одинаковые функции.
- графики парабол 3) и 4) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть 0 и 6.
Решим уравнение x2-6x=0
x(x-6)=0
Произведение равно нулю, когда один из множителей равен нулю. Поэтому рассмотрим два случая:
1) x1=0
2) x-6=0 => x2=6
Неравенства 1) и 2), судя по корням, подходят.
Решим уравнение x2-36=0
x2-62=0
Воспользуемся формулой разность квадратов:
(x-6)(x+6)=0
Опять, произведение равно нулю, когда один из множителей равен нулю. Поэтому рассмотрим два случая:
1) x-6=0 => x1=6
2) x+6=0 => x2=-6
Корни не подходят под рисунок, значит неравенства 3) и 4) не подходят.
Посмотрим на рисунок, в условии показан диапазон, когда график функции выше оси Х, т.е. больше нуля, следовательно, подходит неравенство x2-6x>0
Ответ: 2)
Поделитесь решением
Присоединяйтесь к нам...
Укажите решение системы неравенств
x>8
9-x>0
1)
2)
3)
4) система не имеет решений
На каком рисунке изображено множество решений системы неравенств
x<3,
4-x>0?
1)
2)
3)
4)
На координатной прямой отмечено число a.
Из следующих утверждений выберите верное.
1) (a-6)2>1
2) (a-5)2<1
3) a2<25
4) a2>36
Решение какого из данных неравенств изображено на рисунке?
1) x2-25≤0
2) x2-5x≥0
3) x2-25≥0
4) x2-5x≤0
Известно, что число m отрицательное. На каком из рисунков точки с координатами 0, m, 2m, m2 расположены на координатной прямой в правильном порядке?
1)
2)
3)
4)
Комментарии: