На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b<0
3) k>0, b>0
Если прямая слева направо возрастает, то k>0 (как на графиках Б) и В)), и наоборот, если прямая слева направо убывает, то k<0 (как на графике А)).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем, b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А): k<0, b<0 - вариант 1)
Для графика Б): k>0, b<0 - вариант 2)
Для графика В): k>0, b>0 - вариант 3)
Ответ:
А) | Б) | В) |
1) | 2) | 3) |
Поделитесь решением
Присоединяйтесь к нам...
При каких отрицательных значениях k прямая y=kx-4 имеет с параболой y=x2+3x ровно одну общую точку? Найдите координаты этой точки и постройте данные графики в одной системе координат.
На координатной прямой отмечено число a.
Найдите наибольшее из чисел a2, a3, a4.
1) a2
2) a3
3) a4
4) не хватает данных для ответа
При каких положительных значениях k прямая y=kx-4 имеет с параболой y=x2-3x ровно одну общую точку? Найдите координаты этой точки и постройте данные графики в одной системе координат.
На координатной прямой отмечено число a.
Найдите наибольшее из чисел a2, a3, a4.
1) a2
2) a3
3) a4
4) не хватает данных для ответа
На координатной прямой отмечены точки A, B, C, D. Одна из них соответствует числу √
1) точка A
2) точка B
3) точка C
4) точка D
Комментарии: