На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b<0
3) k>0, b>0
Если прямая слева направо возрастает, то k>0 (как на графиках Б) и В)), и наоборот, если прямая слева направо убывает, то k<0 (как на графике А)).
Узнать знак коэффициента b, можно приравняв х к нулю. Получим: y=k*0+b=b.
Посмотрим на график и узнаем, b больше нуля или меньше. Т.е коэффициент b - это координата "y" точки пересечения прямой и оси y. Тогда:
Для графика А): k<0, b<0 - вариант 1)
Для графика Б): k>0, b<0 - вариант 2)
Для графика В): k>0, b>0 - вариант 3)
Ответ:
А) | Б) | В) |
1) | 2) | 3) |
Поделитесь решением
Присоединяйтесь к нам...
На координатной прямой отмечены точки A, B, C, D. Одна из них соответствует числу √
1) точка A
2) точка B
3) точка C
4) точка D
На координатной прямой отмечены числа x и y.
Какое из приведённых утверждений неверно?
1) y-x<0
2) x2y>0
3) xy<0
4) x+y>0
При каких отрицательных значениях k прямая y=kx-4 имеет с параболой y=x2+2x ровно одну общую точку? Найдите координаты этой точки и постройте данные графики в одной системе координат.
Укажите решение системы неравенств
1)
2)
3)
4) система не имеет решений
При каких отрицательных значениях k прямая y=kx-4 имеет с параболой y=x2+3x ровно одну общую точку? Найдите координаты этой точки и постройте данные графики в одной системе координат.
Комментарии: