Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=62,5*21=125 (из условия задачи). А q=2.
Тогда S4=125*(1-24)/(1-2)=125*(1-16)/(-1)=125*15=1875
Ответ: S4=1875
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые три члена геометрической прогрессии:
125; -100; 80; …
Найдите её пятый член.
Арифметическая прогрессия задана условием an=3,8-5,7n. Найдите a6.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 53-й строке?
Арифметическая прогрессия (an) задана условиями:
a1=48, an+1=an-17.
Найдите сумму первых семи её членов.
Выписано несколько последовательных членов геометрической прогрессии: …; 1,75; x; 28; -112; … Найдите член прогрессии, обозначенный буквой x.
Комментарии: