В геометрической прогрессии сумма первого и второго членов равна 150, а сумма второго и третьего членов равна 75. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=150
b1+b1q=150
b1(1+q)=150
2) b2+b3=75
b1q+b1q2=75
b1(q+q2)=75
b1(q+1)q=75
Подставляем из п. 1)
150q=75 => q=0,5, тогда b1(1+0,5)=150 => b1=100
b2=100*0,5=50
b3=100*0,52=25
Ответ: b1=100, b2=50, b3=25
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условиями: b1=64, bn+1=(1/2)bn. Найдите b7.
Записаны первые три члена арифметической прогрессии: 10; 3; -4. Какое число стоит в этой арифметической прогрессии на 101-м месте?
Выписано несколько последовательных членов геометрической прогрессии: …; 20; x; 5; -2,5; … Найдите член прогрессии, обозначенный буквой x.
В геометрической прогрессии сумма первого и второго членов равна 160, а сумма второго и третьего членов равна 40. Найдите первые три члена этой прогрессии.
Геометрическая прогрессия (bn) задана условиями: b1=64, bn+1=bn*1/2. Найдите b7.
Комментарии: