В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 120. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=40
b1+b1q=40
b1(1+q)=40
2) b2+b3=120
b1q+b1q2=120
b1(q+q2)=120
b1(q+1)q=120
Подставляем из п. 1)
40q=120 => q=3, тогда b1(1+3)=40 => b1=10
b2=10*3=30
b3=10*32=90
Ответ: b1=10, b2=30, b3=90
Поделитесь решением
Присоединяйтесь к нам...
Дана геометрическая прогрессия (bn), знаменатель которой равен 1/2, b1=2. Найдите сумму первых 4 её членов.
Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
Выписаны первые три члена арифметической прогрессии: 20; 17; 14. Какое число стоит в этой арифметической прогрессии на 91-м месте?
Дана арифметическая прогрессия (an), разность которой равна 7, a1=9,4. Найдите a13.
Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; … Найдите сумму первых шестидесяти её членов.
Комментарии: