ОГЭ, Математика. Числовые последовательности: Задача №560B8C | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №560B8C

Задача №180 из 182
Условие задачи:

Геометрическая прогрессия (bn) задана условиями:
b1=-7, bn+1=3bn.
Найдите сумму первых пяти её членов.

Решение задачи:

По условию задачи, геометрическая прогрессия задана условием:
bn+1=3bn, следовательно b2=3b1
q=b2/b1=3.
Найдем сумму:

Ответ: -847

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4CBA5B

Записаны первые три члена арифметической прогрессии: -4; 2; 8; … Какое число стоит в этой арифметической прогрессии на 81-м месте?



Задача №B164CC

Дана арифметическая прогрессия (an), для которой a10=19, a15=44. Найдите разность прогрессии.



Задача №FF975C

В геометрической прогрессии сумма первого и второго членов равна 144, а сумма второго и третьего членов равна 72. Найдите первые три члена этой прогрессии.



Задача №02D67E

Арифметическая прогрессия задана условиями a1=23, an+1=an-15. Найдите сумму первых 8 её членов.



Задача №EA82A6

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 39-й строке?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика