Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Отметим Область допустимых Значений (ОДЗ).
На ноль делить нельзя, следовательно:
x2-4x≠0
x(x-4)≠0
x≠0
x≠4
Теперь упростим нашу функцию:
Получили гиперболическую функцию, значит график - гипербола.
Построим график по точкам:
X | -2 | -1 | -0,5 | 0,5 | 1 | 2 |
Y | -0,5 | 0 | 1 | -3 | -2 | -1,5 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
А) k>0, b<0 Б) k>0, b>0 В) k<0, b>0 |
1) | 2) | 3) |
Постройте график функции
y=x|x|-|x|-3x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А) | Б) | В) | ФОРМУЛЫ 1) y=-1/(6x) 2) y=1/(6x) 3) y=-6/x 4) y=6/x |
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-2 2) y=x-2 3) y=-2x |
А) | Б) | В) |
Комментарии: