Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=-5/x на диапазоне [1;+∞)
y2=-x2-4x на диапазоне (-∞;1)
График первой подфункции - гипербола, будем строить его просто по точкам:
X | 1 | 2 | 5 |
Y | -5 | -2,5 | -1 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=x2-3|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=2/5x+2 2) y=2/5x-2 3) y=-2/5x-2 4) y=-2/5x+2 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=-6/x 2) y=-(1/2)x2 3) y=(1/2)x-2 4) y=-(1/2)x2-2 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Комментарии: