Последовательность задана формулой an=70/(n+1). Сколько членов этой последовательности больше 6?
Для решения этой задачи надо решить неравенство:
70/(n+1)>6
70>6(n+1)
70>6n+6
64>6n
32>3n
32/3>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 10. Таким образом получается, что при n=1, 2, 3,..., 10, an будет больше 6.
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
Выписаны первые несколько членов арифметической прогрессии: 1, 3, 5, … Найдите её одиннадцатый член.
В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.
Выписаны первые несколько членов арифметической прогрессии: 1, 3, 5, … Найдите её одиннадцатый член.
Геометрическая прогрессия задана условием bn=164(1/2)n. Найдите сумму первых её 4 членов.
Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?
Комментарии: