Последовательность задана формулой an=70/(n+1). Сколько членов этой последовательности больше 6?
Для решения этой задачи надо решить неравенство:
70/(n+1)>6
70>6(n+1)
70>6n+6
64>6n
32>3n
32/3>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 10. Таким образом получается, что при n=1, 2, 3,..., 10, an будет больше 6.
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
В геометрической прогрессии сумма первого и второго членов равна 144, а сумма второго и третьего членов равна 48. Найдите первые три члена этой прогрессии.
Выписаны первые три члена арифметической прогрессии:
-6; 1; 8; ...
Найдите 6-й член этой прогрессии.
Дана арифметическая прогрессия: -7; -5; -3; … Найдите сумму первых пятидесяти её членов.
Записаны первые три члена арифметической прогрессии: -6; 1; 8. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Выписаны первые несколько членов арифметической прогрессии: 4; 7; 10; … Найдите сумму первых шестидесяти пяти её членов.
Комментарии: