ОГЭ, Математика. Числовые последовательности: Задача №414579 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №414579

Задача №74 из 182
Условие задачи:

Выписаны первые несколько членов арифметической прогрессии: -1; 2; 5; … Найдите сумму первых пятидесяти пяти её членов.

Решение задачи:

Чтобы найти сумму арифметической прогрессии у нас есть две формулы.
a55 мы не знаем, поэтому воспользуемся второй формулой. Для этого найдем d - разность прогрессии.
d=a2-a1=2-(-1)=3.
Подставляем все в формулу:
Sn=n*(2a1+(n-1)d)/2
S55=55*(2*(-1)+(55-1)*3)/2=55*(-2+162)/2=55*80=4400
Ответ: S55=4400

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4C6ABB

Дана арифметическая прогрессия (an), разность которой равна -4,9, a1=-6,4. Найдите a15.



Задача №DC2B3F

Арифметическая прогрессия (an) задана условиями:
a1=48, an+1=an-17.
Найдите сумму первых семи её членов.



Задача №1617B1

Дана арифметическая прогрессия (an), разность которой равна 2,5, a1=8,7. Найдите a9.



Задача №44DC20

Геометрическая прогрессия (bn) задана условиями: b1=64, bn+1=bn*1/2. Найдите b7.



Задача №E53FE9

Выписаны первые несколько членов геометрической прогрессии: 1512; -252; 42; … Найдите сумму первых четырёх её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика