В геометрической прогрессии сумма первого и второго членов равна 144, а сумма второго и третьего членов равна 72. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=144
b1+b1q=144
b1(1+q)=144
2) b2+b3=72
b1q+b1q2=72
b1(q+q2)=72
b1(q+1)q=72
Подставляем из п. 1)
144q=72 => q=1/2, тогда b1(1+1/2)=144 => b1=144/(3/2)
b1=144*2/3=96
b2=96*1/2=96/2=48
b3=96*(1/2)2=96/22=24
Ответ: b1=96, b2=48, b3=24
Поделитесь решением
Присоединяйтесь к нам...
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 117-й строке?
Последовательность задана условиями b1=-3, bn+1=-3*1/bn. Найдите b4.
В первом ряду кинозала 24 места, а в каждом следующем на 2 больше, чем в предыдущем. Сколько мест в восьмом ряду?
Дана арифметическая прогрессия: 2; 6; 10; … . Найдите сумму первых сорока её членов.
Дана арифметическая прогрессия: -3; 1; 5; … . Найдите сумму первых шестидесяти её членов.
Комментарии:
(2022-01-23 21:22:33) : Фигуры №1, №2, №3 составляются из квадратов, как показано на рисунке.
(2015-05-26 10:28:52) сквидварт: спасибо