ОГЭ, Математика. Числовые последовательности: Задача №1D0E75 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №1D0E75

Задача №66 из 182
Условие задачи:

Выписаны первые несколько членов арифметической прогрессии: -7; -5; -3; … Найдите сумму первых пятидесяти её членов.

Решение задачи:

Чтобы найти сумму арифметической прогрессии у нас есть две формулы.
a50 мы не знаем, поэтому воспользуемся второй формулой. Для этого найдем d - разность прогрессии.
d=a2-a1=-5-(-7)=2.
Подставляем все в формулу:
Sn=n*(2a1+(n-1)d)/2
S50=50*(2*(-7)+(50-1)*2)/2=50*(-14+98)/2=50*42=2100
Ответ: S50=2100

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №5E80AC

Выписано несколько последовательных членов геометрической прогрессии: …; 1,5; x; 24; -96; … Найдите член прогрессии, обозначенный буквой x.



Задача №9B0CDE

Последовательность задана условиями b1=8, bn+1=-4*1/bn. Найдите b2.



Задача №25E8A7

Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.



Задача №8D99E8

Выписано несколько последовательных членов арифметической прогрессии: 25; 19; 13; … Найдите первый отрицательный член этой прогрессии.



Задача №E552B1

Выписано несколько последовательных членов арифметической прогрессии: -39; -30; -21; … Найдите первый положительный член этой прогрессии.

Комментарии:


(2016-12-18 17:27:36) Администратор: Сергей, посмотрите задачу №22.
(2016-12-18 09:20:47) сергей: выписаны первые несколько арифметической прогрессии -4 2 8 найти 81 член прогрессии

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика