ОГЭ, Математика. Числовые последовательности: Задача №288E24 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №288E24

Задача №136 из 182
Условие задачи:

Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.

Решение задачи:

Чтобы найти сумму арифметической прогрессии у нас есть две формулы.
a10 мы не знаем, поэтому воспользуемся второй формулой. Для этого найдем d - разность прогрессии.
d=a2-a1=-4-(-7)=-4+7=3.
Подставляем все в формулу:
Sn=n*(2a1+(n-1)d)/2
S10=10*(2*(-7)+(10-1)*3)/2=5*(-14+9*3)=5*(-14+27)=5*13=65
Ответ: S10=65

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №119662

Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите её шестнадцатый член.



Задача №CA92AF

Геометрическая прогрессия задана условием bn=160*(3)n. Найдите сумму первых её 7 членов.



Задача №282269

Записаны первые три члена арифметической прогрессии: 10; 3; -4. Какое число стоит в этой арифметической прогрессии на 101-м месте?



Задача №32A9E3

Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?



Задача №3403C3

Последовательность задана условиями b1=-7, bn+1=-1/bn. Найдите b3.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Сумма первых n членов арифметической прогрессии.
Сумма первых n членов арифметической прогрессии Sn=a1 + a2 + a3 +...+ an может быть найдена по формулам:
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика