Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=65°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 65°*2=130°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=130°.
Ответ: /AOB=130°.
Поделитесь решением
Присоединяйтесь к нам...
Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.
Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Стороны AC, AB, BC треугольника ABC равны 2√
Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 31.
Хорды AC и BD окружности пересекаются в точке P, BP=7, CP=14, DP=10. Найдите AP.
Комментарии: