ОГЭ, Математика. Геометрия: Задача №03F9DB | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №03F9DB

Задача №76 из 1087
Условие задачи:

В равнобедренной трапеции основания равны 4 и 8, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.

Решение задачи:

Проведем высоты как показано на рисунке. И рассмотрим треугольник CDF. Это прямоугольный треугольник (т.к. /CFD - прямой).
По теореме о сумме углов треугольника найдем угол FCD
/FCD=180°-90°-45°=45°. Заметим, что /FCD=/FDC. Следовательно, треугольник равнобедренный (по свойству равнобедренного треугольника). Отсюда следует, что FD=FC (по определению равнобедренного треугольника).
Рассмотрим треугольник ABE. /BAE=/FDC=45° (т.к. по условию задачи трапеция равнобедренная).
Аналогично по теореме о сумме углов треугольника получим, что /ABE=180°-90°-45°=45°, а следовательно (аналогично предыдущему треугольнику) треугольник ABE - равнобедренный.
Причем эти треугольники равны (AB=CD, BE=CF и /ABE=/FCD - первый признак равенства)=> AE=FD. Рассмотрим четырехугольник BCFE.
Т.к. BC||EF, BE и FC - высоты, следовательно /BEF=90°=/CFE. /EBC=/BCF=90°. Следовательно четырехугольник BCFE - прямоугольник => BC=EF.
Теперь можем записать:
AD=AE+EF+FD, 8=AE+4+FD, 8=AE+4+AE
4=2*AE => AE=2.
Т.к. AE=BE=2, а BE-высота трапеции, то теперь можем вычислить площадь трапеции.
Sтрапеции=(BC+AD)/2*BE
Sтрапеции=(4+8)/2*2=12.
Ответ: Sтрапеции=12.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №FD6BF0

Лестницу длиной 2,5 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 0,7 м?



Задача №45BF27

Площадь прямоугольного треугольника равна 983/3. Один из острых углов равен 30°. Найдите длину катета, прилежащего к этому углу.



Задача №9A0CCB

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=15, AC=25, NC=22.



Задача №FC110F

В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.



Задача №F894AD

Укажите номера верных утверждений.
1) Если один из углов треугольника прямой, то треугольник прямоугольный.
2) Диагонали квадрата точкой пересечения делятся пополам.
3) Точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Комментарии:


(2014-05-25 18:44:58) Администратор: Аука, так как трапеция равнобедренная, то все выкладки для треугольника CFD справедливы и для треугольника ABE, следовательно треугольник ABE - равнобедренный, т.е. AE=BE.
(2014-05-25 18:32:31) Ayka: почему AE=BE ?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольник — параллелограмм, у которого все углы прямые (равны 90 градусам).
Свойства прямоугольника:
1) Противолежащие стороны равны.
2) Диагонали прямоугольника равны
3) Вокруг прямоугольника всегда можно описать окружность.
4) Диагонали точкой пересечения делятся пополам;

Признак прямоугольника: Если в параллелограмме диагонали равны, то этот параллелограмм — прямоугольник.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика