Стороны AC, AB, BC треугольника ABC равны 2√
По условию задачи ∠KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 2√
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. ∠KAC=∠ABC. ∠ACK не равен ∠ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому ∠ACK = ∠BAC. Следовательно, ∠AKC=∠ACB => cos(∠AKC)=cos(∠ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(∠ACB).
(√
5=4*2+1-4*√
5-9=-4*√
4=4*√
cos(∠ACB)=1/√
Для удобства домножим числитель и знаменатель на √
cos(∠ACB)=√
cos(∠AKC)=cos(∠ACB)=√
Ответ: √
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки A, B и C таким образом, что OABC – ромб. Найдите угол ABC. Ответ дайте в градусах.
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.
В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,6 м, если длина его тени равна 2 м, высота фонаря 4 м?
Комментарии:
(2017-03-25 19:37:07) Администратор: Евгения, я добавил в решение пару строк, чтобы стало понятней.
(2017-03-25 12:34:31) Евгения: Добрый день, как в знаменателе в ответе появилась 2? Спасибо