Укажите номера верных утверждений.
1) Любой квадрат является ромбом.
2) Против равных сторон треугольника лежат равные углы.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
Рассмотрим каждое утверждение:
1) "Любой квадрат является ромбом", это утверждение верно, т.к.
квадрат удовлетворяет определению
ромба.
2) "Против равных сторон треугольника лежат равные углы", это утверждение верно (по свойству
равнобедренного и
равностороннего треугольников).
3) "Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности", это утверждение верно. Эта система (точка и окружность) имеет
ось симметрии - прямая проведенная через данную точку и центр окружности. Соответственно, если можно провести одну
касательную, то можно провести и вторую, симметричную первой.
Ответ: 1), 2) и 3)
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=2:3, KM=14.
На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 3°?
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OKI. Ответ дайте в градусах.
Внутри параллелограмма ABCD выбрали произвольную точку E. Докажите, что сумма площадей треугольников BEC и AED равна половине площади параллелограмма.
Комментарии: