В параллелограмм вписана окружность. Найдите периметр параллелограмма, если одна из его сторон равна 6.
Окружность может быть вписана в четырехугольник, когда выполняется
условие:
AB+CD=BC+AD
AB=CD=x (по
свойству параллелограмма)
BC=AD=y (по
свойству параллелограмма)
Получаем:
x+x=y+y
2x=2y
x=y, т.е. все стороны нашего
параллелограмма равны, следовательно это
ромб.
Периметр
ромба равен:
P=6*4=24
Ответ: 24
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Отрезок AB=32 касается окружности радиуса 24 с центром O в точке B. Окружность пересекает отрезок AO в точке D. Найдите AD.
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.
В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.
Комментарии:
(2016-05-23 21:05:51) Администратор: Елена, сторона ромба, по условию, равна 6, поэтому 4*6, ну или 6*4. Чтобы не было разночтений, я поменял порядок множителей.
(2016-05-23 11:01:33) Елена: Почему периметр ромба равен 4*6? Должно быть 4*4.