Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.
Расстояние от точки О до прямых - это длина перпендикуляра, проведенного от точки до прямой. Иными словами, надо доказать, что ON=OM=OK.
Рассмотрим треугольник NBO.
sin∠NBO=ON/OB (по
определению синуса).
ON=OB*sin∠NBO
Рассмотрим треугольник BMO.
sin∠OBM=OM/OB (по
определению синуса).
OM=OB*sin∠OBM
∠NBO=∠OBM (т.к. OB -
биссектриса).
Следовательно, OM=OB*sin∠OBM=OB*sin∠NBO=ON
Аналогично доказывается, что OK=OM.
Т.е. ON=OM=OK.
Поделитесь решением
Присоединяйтесь к нам...
Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=43° и ∠OAB=13°. Найдите угол BCO. Ответ дайте в градусах.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.
Угол A четырёхугольника ABCD, вписанного в окружность, равен 82°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.
Найдите величину острого угла параллелограмма ABCD, если биссектриса угла A образует со стороной BC угол, равный 14°. Ответ дайте в градусах.
Один из углов равнобедренной трапеции равен 113°. Найдите меньший угол этой трапеции. Ответ дайте в градусах.
Комментарии: