Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

ОГЭ, Математика.
Геометрия: Задача №2D06EF

Задача №685 из 1068
Условие задачи:

Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.

Решение задачи:

Расстояние от точки О до прямых - это длина перпендикуляра, проведенного от точки до прямой. Иными словами, надо доказать, что ON=OM=OK.
Рассмотрим треугольник NBO.
sin∠NBO=ON/OB (по определению синуса).
ON=OB*sin∠NBO
Рассмотрим треугольник BMO.
sin∠OBM=OM/OB (по определению синуса).
OM=OB*sin∠OBM
∠NBO=∠OBM (т.к. OB - биссектриса).
Следовательно, OM=OB*sin∠OBM=OB*sin∠NBO=ON
Аналогично доказывается, что OK=OM.
Т.е. ON=OM=OK.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №BC288C

В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.

Задача №C8980C

В треугольнике АВС углы А и С равны 20° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD.

Задача №A625E2

Четырёхугольник ABCD вписан в окружность. Угол ABC равен 138°, угол CAD равен 83°. Найдите угол ABD. Ответ дайте в градусах.

Задача №A7C080

В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём СF = АM, BE = DK. Докажите, что EFKM — параллелограмм.

Задача №B65823

Найдите угол, который образуют минутная и часовая стрелки часов в 11:00. Ответ дайте в градусах.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика