Биссектрисы углов B и C трапеции ABCD пересекаются в точке O, лежащей на стороне AD. Докажите, что точка O равноудалена от прямых AB, BC и CD.
Расстояние от точки О до прямых - это длина перпендикуляра, проведенного от точки до прямой. Иными словами, надо доказать, что ON=OM=OK.
Рассмотрим треугольник NBO.
sin∠NBO=ON/OB (по
определению синуса).
ON=OB*sin∠NBO
Рассмотрим треугольник BMO.
sin∠OBM=OM/OB (по
определению синуса).
OM=OB*sin∠OBM
∠NBO=∠OBM (т.к. OB -
биссектриса).
Следовательно, OM=OB*sin∠OBM=OB*sin∠NBO=ON
Аналогично доказывается, что OK=OM.
Т.е. ON=OM=OK.
Поделитесь решением
Присоединяйтесь к нам...
Площадь параллелограмма
ABCD равна 56. Точка E — середина стороны
CD. Найдите площадь трапеции AECB.
Найдите тангенс угла AOB, изображённого
на рисунке.
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные
60° и 55°. Найдите меньший угол параллелограмма.
Комментарии: