Юмор

Автор: Влад
Дано: в школе есть шестиместные туристические палатки. Какое наименьшее число палаток нужн...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №953 из 1001. Номер задачи на WWW.FIPI.RU - 4534C9


Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=3, AD=5, AC=24. Найдите AO.

Решение задачи:

Рассмотрим треугольники AOD и BOC.
По определению трапеции, AD||BC, а AC можно рассматривать как секущую при параллельных прямых. Тогда:
∠DAO=∠BCO (накрест лежащие углы).
∠AOD=∠BOC (вертикальные углы).
Тогда, по первому признаку подобия (по двум углам), данные треугольники подобны.
Следовательно, можем записать пропорцию:
AD/BC=AO/OC
5/3=AO/OC
5*OC=3*AO
При этом AO+OC=AC=24
OC=24-AO, подставляем это равенство в ранее полученную пропорцию:
5*(24-AO)=3*AO
120-5*AO=3*AO
120=3*AO+5*AO
120=8*AO
AO=120/8=15
Ответ: 15

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 1001)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика