Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 16, а площадь равна 32√
Пусть а и b -
катеты треугольника, с - гипотенуза.
Площадь
прямоугольного треугольника равна половине произведения катетов.
S=ab/2=32√
ab=64√
a=64√
По
теореме Пифагора:
c2=a2+b2
162=(64√
256b2=642*3+b4
b4-256b2+12288=0
Обозначим b2=t
t2-256t+12288=0
Решим это
квадратное уравнение:
D=(-256)2-4*12288=65536-49152=16384
√
t1=(-(-256)+128)/2=192
t2=(-(-256)-128)/2=64
Рассмотрим оба случая:
1) t=192=b2
b=√
По
определению, cosα=b/c=8√
α=30° (по
таблице)
По
теореме о сумме углов треугольника, второй острый угол равен 180°-90°-30°=60°
2) t=64=b2
b=8
По
определению, cosα=b/c=8/16=1/2
α=60° (по
таблице)
По
теореме о сумме углов треугольника, второй острый угол равен 180°-90°-60°=30°
Ответ: 30° и 60°
Поделитесь решением
Присоединяйтесь к нам...
Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
В окружности с центром в точке О проведены диаметры AD и BC, угол
ABO равен 80°. Найдите величину угла ODC.
Лестницу длиной 2,5 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 0,7 м?
На каком расстоянии (в метрах) от фонаря стоит человек ростом 2 м, если длина его тени равна 1 м, высота фонаря 9 м?
От столба к дому натянут провод длиной 10 м, который закреплён на стене дома на высоте 3 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 8 м.
Комментарии:
(2023-05-15 11:36:55) Алекс: Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 36,а его площадь равна 162 корня из 3
(2023-05-15 11:36:10) Алекс : Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 36,а его площадь равна 162 корня из 3