Постройте график функции y=|x|(x+1)-5x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
y=x(x+1)-5x, при x≥0
y=(-x)(x+1)-5x, при x<0
y=x2+x-5x, при x≥0
y=-x2-x-5x, при x<0
y=x2-4x, при x≥0
y=-x2-6x, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y=x2-4x, при x≥0
Графиком данной подфункции является парабола. Ветви этой параболы направлены вверх, так как коэффициент при x2 положительный.
Найдем корни уравнения x2-4x=0
x(x-4)=0
x1=0
x-4=0
x2=4
Построим график по точкам:
X | 0 | 1 | 2 | 3 | 4 |
Y | 0 | -3 | -4 | -3 | 0 |
X | 0 | -1 | -2 | -3 |
Y | 0 | 5 | 8 | 9 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Постройте график функции y=x2-5|x|+6. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b..
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k>0, b<0 3) k<0, b>0 4) k>0, b>0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунке показано, как изменялась температура воздуха на протяжении одних суток. По горизонтали указано время суток, по вертикали — значение температуры в градусах Цельсия. Найдите разность между наибольшим и наименьшим значениями температуры в первой половине суток. Ответ дайте в градусах Цельсия.
Постройте график функции и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
Комментарии: