В треугольнике ABC известно, что AB=BC=15, AC=24. Найдите длину медианы BM.
Треугольник ABC -
равнобедренный (по условию).
Тогда, по третьему свойству равнобедренного треугольника, BM является высотой.
Т.е. треугольник ABM - прямоугольный.
AM=AC/2=24/2=12 (так как BM -
медиана).
По теореме Пифагора:
AB2=BM2+AM2
152=BM2+122
225=BM2+144
BM2=81
BM=9
Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
От деревянной правильной треугольной призмы отпилили все её вершины (см. рис.). Сколько вершин у получившегося многогранника (невидимые рёбра на рисунке не изображены)?
Пожарную лестницу длиной 10 м приставили к окну дома. Нижний конец лестницы отстоит от стены на 6 м. На какой высоте расположено окно? Ответ дайте в метрах.
Сторона основания правильной треугольной призмы ABCA1B1C1 равна 2, а высота этой призмы равна 4√3. Найдите объём призмы ABCA1B1C1.
Два ребра прямоугольного параллелепипеда равны 8 и 2, а объём параллелепипеда равен 144. Найдите площадь поверхности этого параллелепипеда.
В треугольнике ABC угол C равен 90°, AB=25, AC=24. Найдите cosB.
Комментарии: