В сосуде, имеющем форму конуса, уровень жидкости достигает 1/2 высоты. Объём сосуда 1600 мл. Чему равен объём налитой жидкости? Ответ дайте в миллилитрах.
Рассмотрим треугольники, которые образуют:
1) R-радиус основания сосуда, H-высота сосуда и боковая сторона сосуда
2) r-радиус конуса, образованный жидкостью, h-высота этого же конуса и боковая сторона этого конуса
Нижний угол этих треугольников общий.
Углы, образованные радиусами и высотами, прямые.
Следовательно, по первому признаку подобия треугольников эти треугольники
подобны.
Тогда, мы можем записать:
H/h=R/r
Из условия нам известно, что h=H/2, следовательно r=R/2.
Так как сосуд имеет вид конуса, то его объем мы можем записать так:
Соответственно, объем жидкости, которая тоже имеет форму конуса, мы запишем так:
Подставляем значения r и h, выраженные через R и H.
Заметим, все весь результат, кроме 1/8, это объем сосуда, т.е. можем записать:
Ответ: 200
Поделитесь решением
Присоединяйтесь к нам...
Даны два цилиндра. Радиус основания и высота первого равны соответственно 6 и 9, а второго — 9 и 2.
Во сколько раз объём первого цилиндра больше объёма второго?
В равнобедренном треугольнике ABC основание AC равно 40, площадь треугольника равна 300. Найдите длину боковой стороны AB.
Какой наименьший угол (в градусах) образуют минутная и часовая стрелки часов в 17:00?
В бак, имеющий форму прямой призмы, налито 5 л воды. После полного погружения в воду детали уровень воды в баке поднялся в 1,4 раза. Найдите объём детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров.
Два ребра прямоугольного параллелепипеда равны 8 и 2, а объём параллелепипеда равен 144. Найдите площадь поверхности этого параллелепипеда.
Комментарии: