ОГЭ, Математика. Геометрия: Задача №92C757 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №92C757

Задача №83 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны", это утверждение верно (по признаку параллельности прямых)
2) "Диагональ трапеции делит её на два равных треугольника." Во-первых, нет такого свойства трапеции. Во-вторых, если рассмотреть прямоугольную трапецию с проведенной диагональю, то становится очевидным, что один из получившихся треугольников - прямоугольный, а второй - нет. Следовательно, это утверждение неверно.
3) "Если в ромбе один из углов равен 90°, то такой ромб — квадрат". Чтобы ромб был квадратом, необходимо, чтобы все 4 угла были равны 90°.
Т.к. ромб - частный случай параллелограмма, то к нему и применимы все свойства параллелограмма, следовательно (по свойству параллелограмма), противоположный прямому углу, угол тоже равен 90°.
Другие два угла по тому же свойству равны друг другу.
Сумма углов многоугольника вычисляется по формуле (n-2)*180°, где n - количество углов. В нашем случае, углов - 4. Тогда сумма углов равна (4-2)*180°=360°.
Тогда получается, что сумма двух неизвестных углов равна 360°-90°-90°=180°. А так как они равны друг другу, то каждый из них равен 180°/2=90°.
Т.е. мы узнали, что все четыре угла равны по 90°, следовательно это утверждение верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №D8D261

Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.



Задача №26E367

В треугольнике ABC угол C равен 90°, sinA=7/17, AC=415. Найдите AB.



Задача №2CB285

В равнобедренном треугольнике ABC (АВ=ВС) точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равнобедренный.



Задача №FB012A

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 163°. Найдите угол C. Ответ дайте в градусах.



Задача №4A3A58

Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равностороннего треугольника совпадают.
2) Существует квадрат, который не является ромбом.
3) Сумма углов остроугольного треугольника равна 180°.

Комментарии:


(2015-04-11 12:09:16) Администратор: Света, спасибо за уточнение, исправлено.
(2015-04-11 00:21:53) света: по 1)-это признак параллельности прямых ,а не свойство

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика