Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
Рассмотрим каждое утверждение.
1) "Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности", это утверждение неверно,т.к. все зависит от расположения окружностей. Например, если центры окружностей совпадают, то окружности не пересекутся.
2) "Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны", это утверждение верно (по
свойству углов)
3) "У
равнобедренного треугольника есть
центр симметрии", это утверждение неверно, т.к. у
равнобедренного треугольника есть только
осевая симметрия (ось совпадает с медианой опущенной к основанию).
Поделитесь решением
Присоединяйтесь к нам...
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Площадь прямоугольного треугольника равна
722√
Синус острого угла A треугольника ABC равен √
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=2, а расстояние от точки K до стороны AB равно 1.
Комментарии: