Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.
Рассмотрим каждое утверждение.
1) "Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности", это утверждение неверно,т.к. все зависит от расположения окружностей. Например, если центры окружностей совпадают, то окружности не пересекутся.
2) "Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны", это утверждение верно (по
свойству углов)
3) "У
равнобедренного треугольника есть
центр симметрии", это утверждение неверно, т.к. у
равнобедренного треугольника есть только
осевая симметрия (ось совпадает с медианой опущенной к основанию).
Поделитесь решением
Присоединяйтесь к нам...
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 25° и 30°. Найдите больший угол параллелограмма.
Найдите площадь квадрата, если его диагональ равна 1.
Медиана равностороннего треугольника равна 13√3. Найдите его сторону.
Радиус вписанной в квадрат окружности равен 14√
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если при пересечении двух прямых третьей прямой сумма внутренних односторонних углов равна
180°, то эти прямые параллельны.
3) Площадь треугольника не превышает произведения двух его сторон.
Комментарии: