Найдите площадь квадрата, если его диагональ равна 1.
По
определению стороны
квадрата равны друг другу, обозначим длину сторон как "а".
По
свойству, все углы квадрата прямые, следовательно можно применить
теорему Пифагора для получившегося треугольника, квадрат диагонали будет равен сумме квадратов сторон:
a2+a2=12
2a2=1
a2=0,5
a2 - это и есть площадь квадрата.
Ответ: 0,5
Поделитесь решением
Присоединяйтесь к нам...
Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=18, DK=9, BC=16. Найдите AD.
Найдите площадь трапеции, изображённой на рисунке.
Площадь прямоугольного треугольника равна 50√
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=15, AC=25.
Комментарии: