ОГЭ, Математика. Геометрия: Задача №805818 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №805818

Задача №69 из 1087
Условие задачи:

Стороны AC, AB, BC треугольника ABC равны 32, 14 и 1 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.

Решение задачи:

По условию задачи /KAC>90°, т.е. это наибольший угол в треугольнике AKC следовательно, сторона KC, противолежащая этому углу тоже наибольшая (по теореме о соотношениях между сторонами и углами треугольника). Сторона AC равная 32 - наибольшая сторона исходного треугольника ABC (т.к. 32>14>1). Следовательно, угол ABC - наибольший угол треугольника ABC.
По условию задачи треугольник KAC подобен исходному треугольнику ABC. А значит углы этих треугольников соответственно равны (по определению подобных треугольников). Поэтому наибольшие углы двух рассматриваемых треугольников равны, т.е. /KAC=/ABC. /ACK не равен /ACB ( т.к. KC пересекает сторону AB в точке, отличной от B), поэтому /ACK = /BAC. Следовательно, /AKC=/ACB => cos(/AKC)=cos(/ACB).
Применяя теорему косинусов мы можем записать AB2=AC2+BC2-2*AC*BC*cos(/ACB).
(14)2=(32)2+12-2*32*1*cos(/ACB);
14=9*2+1-6*2*cos(/ACB);
14-19=-6*2*cos(/ACB);
5=6*2*cos(/ACB);
cos(/AKC)=cos(/ACB)=5/(6*2)
Ответ: cos(/AKC)=5/(6*2)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A71C6A

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.



Задача №74F521

На окружности отмечены точки A и B так, что меньшая дуга AB равна 26°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.



Задача №958BB8

Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные 25° и 100° соответственно.



Задача №4DCFDB

Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.



Задача №983824

Какие из данных утверждений верны? Запишите их номера.
1) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
2) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны, то эти прямые параллельны.
3) У равнобедренного треугольника есть центр симметрии.

Комментарии:


(2017-03-30 23:04:20) Администратор: БМБ, решите свою задачу по аналогии с этой.
(2017-03-29 22:10:44) БМБ: Стороны AC, AB, BCтреугольника ABC равны и 2 коня из 3 и корень из 7 1 соответственно. Точка K расположе‐ на вне треугольника ABC , причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K , A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90° .
(2017-03-29 22:03:07) БМБ: . Стороны AC, AB, BC треугольника ABC равны ,3корня из 2 ,корень из 14 и 1 соответственно. Точка K расположе‐ на вне треугольника ABC , причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90°

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика