ОГЭ, Математика. Геометрия: Задача №90F613 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №90F613

Задача №68 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его высотой.
2) Диагонали прямоугольника равны.
3) У любой трапеции основания параллельны.

Решение задачи:

Рассмотрим каждое утверждение.
1) "Каждая из биссектрис равнобедренного треугольника является его высотой", это утверждение неверно, т.к. по свойству равнобедренного треугольника, только биссектриса, проведенная к основанию является его высотой.
2) "Диагонали прямоугольника равны", это утверждение верно (по свойству прямоугольника).
3) "У любой трапеции основания параллельны", это утверждение верно (по определению трапеции).

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №8B0579

Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 40:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.



Задача №0A7291

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.



Задача №4A7E13

Хорды AC и BD окружности пересекаются в точке P, BP=9, CP=15, DP=20. Найдите AP.



Задача №8B0092

Найдите тангенс угла С треугольника ABC, изображённого на рисунке.



Задача №0695C1

Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=13.

Комментарии:


(2023-11-04 15:37:54) Ксения: Сторона ромба равна 7, а один из углов равен 150°. Найдите высоту

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика