Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 40:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.
Пусть AD -
биссектриса, описанная в условии.
BC - сторона, равная 30.
Рассмотрим треугольник ADC.
Для этого треугольника CO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AC/CD=40/1
AC=40*CD
Рассмотрим треугольник ABD.
Для этого треугольника BO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AB/BD=40/1
AB=40*BD
Складываем полученные равенства:
AC+AB=40*CD+40*BD
AC+AB=40(CD+BD), CD+BD=BC=30
AC+AB=40*30
AC+AB=1200
PABC=AC+AB+BC=1200+30=1230
Ответ: PABC=1230
Поделитесь решением
Присоединяйтесь к нам...
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=8, BC=24. Найдите AK.
Площадь прямоугольного треугольника равна 50√
К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.
Найдите тангенс угла AOB.
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 52°. Найдите угол B этой трапеции. Ответ дайте в градусах.
Комментарии:
(2020-03-31 20:27:05) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправьте заявку на добавление задачи, и мы ее обязательно добавим.
(2020-03-12 21:48:56) : . В треугольнике ABC проведена биссектриса CK. Найдите периметр треугольника ABC, если BC = 8, BK = 3, .