Точка О – центр окружности, /ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=25°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 25°*2=50°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=50°.
Ответ: /AOB=50°.
Поделитесь решением
Присоединяйтесь к нам...
Найдите площадь параллелограмма, изображённого на рисунке.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 38°, 78° и 64°.
Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Угол A четырёхугольника ABCD, вписанного в окружность, равен 82°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.
Комментарии: