Точка О – центр окружности, /ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).
По условию /ACB=25°, этот угол является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле).
Следовательно, градусная мера дуги, в нашей задаче, равна 25°*2=50°.
/AOB является
центральным и равен градусной мере дуги, на которую опирается, следовательно, /AOB=50°.
Ответ: /AOB=50°.
Поделитесь решением
Присоединяйтесь к нам...
Радиус вписанной в квадрат окружности равен 22√2. Найдите диагональ этого квадрата.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
25° и 100° соответственно.
Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно 19, а одна из диагоналей ромба равна 76. Найдите углы ромба.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 38°, 78° и 64°.
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.
Комментарии: