Основания трапеции равны 5 и 40, одна из боковых сторон равна 14, а косинус угла между ней и одним из оснований равен 3/5. Найдите площадь трапеции.
Площадь
трапеции равна произведению полусуммы оснований на высоту. Основания нам известны, найдем высоту.
По
определению cos(/CDE)=ED/CD
3/5=ED/14
ED=3*14/5=8,4
По
теореме Пифагора:
CD2=ED2+EC2
142=8,42+EC2
196=70,56+EC2
EC2=125,44
EC=11,2 - это и есть высота
Sтрапеции=EC*(BC+AD)/2
Sтрапеции=11,2*(5+40)/2
Sтрапеции=5,6*45=252
Ответ: Sтрапеции=252
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 136. Найдите стороны треугольника ABC.
От столба высотой 12 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 15 м. Вычислите длину провода. Ответ дайте в метрах.
Синус острого угла A треугольника ABC равен √
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CKD.
Найдите угол ABC . Ответ дайте в градусах.
Комментарии: