Углы при одном из оснований трапеции равны 50° и 40°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 15 и 13. Найдите основания трапеции.
Продлим стороны AB и CD до пересечения в точке K.
Рассмотрим треугольник AKD.
По
теореме о сумме углов треугольника:
∠AKD+∠KDA+∠DAK=180°
∠AKD+50°+40°=180°
∠AKD=90°
Следовательно треугольник AKD -
прямоугольный с гипотенузой AD.
KF -
медиана (по условию задачи).
Мысленно опишем вокруг этого треугольника окружность. Так как треугольник
прямоугольный, то центр окружности располагается на середине гипотенузы AD (по
теореме об описанной окружности).
Следовательно AF=FD=R - радиус окружности,
медиана KF тоже равна радиусу и, следовательно, равна AD/2.
Рассмотрим треугольник GKH.
Для этого треугольника KO -
медиана и равна половине гипотенузы GH (как и у предыдущего треугольника).
KO=OH=GH/2
В треугольнике BKC - аналогичная ситуация: KE=EC=BC/2
Вернемся к треугольнику GKH:
KO=OH=GH/2=15/2=7,5
7,5=OH=KE+EO=EC+EF/2
EC=7,5-EF/2=7,5-13/2=7,5-6,5=1
BC=2*EC=2*1=2
Рассмотрим трапецию ABCD.
GH -
средняя линия, следовательно GH=(BC+AD)/2
2GH=BC+AD
AD=2GH-BC=2*15-2=30-2=28
Ответ: AD=28, BC=2
Поделитесь решением
Присоединяйтесь к нам...
На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH=4, BH=64. Найдите CH.
Точка O – центр окружности, на которой лежат точки P, Q и R таким образом, что OPQR – ромб. Найдите угол ORQ. Ответ дайте в градусах.
AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=25°. Найдите величину угла BOC. Ответ дайте в градусах.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 6.
Комментарии: