Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если
угол BAC равен 74°. Ответ дайте в градусах.
По
теореме об описанной окружности, центр описанной окружности лежит на точке пересечения
серединных перпендикуляров сторон треугольника.
У
прямоугольного треугольника центр окрудности лежит на середине гипотенузы, так же как и в треугольнике нашей задачи, следовательно, данный треугольник
прямоугольный.
Следовательно, угол ACB=90°.
По
теореме о сумме углов треугольника:
180°=∠ACB+∠CBA+∠BAC
180°=90°+∠CBA+74°
∠CBA=180°-90°-74°
∠CBA=16°
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Косинус острого угла A треугольника ABC равен . Найдите sinA.
Сторона ромба равна 20, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Точка H является основанием высоты BH, проведённой из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите PK, если BH=19.
Найдите площадь трапеции, изображённой на рисунке.
Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Комментарии:
(2018-03-10 15:07:06) ПЕТЯ: центр окружности описанной около треугольника abc лежит на стороне ab НАЙДИТЕ УГОЛ АБС ЕСЛИ УГОЛ ВАС =33 РЕШУ
(2017-05-14 18:53:14) Администратор: Да, можно и так это определить.
(2017-05-13 18:44:14) : То, что треугольник прямоугольный следует из теоремы: вписанный угол, опирающийся на диаметр, равен 90 градусам