Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если
угол BAC равен 74°. Ответ дайте в градусах.
По
теореме об описанной окружности, центр описанной окружности лежит на точке пересечения
серединных перпендикуляров сторон треугольника.
У
прямоугольного треугольника центр окрудности лежит на середине гипотенузы, так же как и в треугольнике нашей задачи, следовательно, данный треугольник
прямоугольный.
Следовательно, угол ACB=90°.
По
теореме о сумме углов треугольника:
180°=∠ACB+∠CBA+∠BAC
180°=90°+∠CBA+74°
∠CBA=180°-90°-74°
∠CBA=16°
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Сколько досок длиной 4 м, шириной 20 см и толщиной 30 мм выйдет из бруса длиной 80 дм, имеющего в сечении прямоугольник размером 30 см на 40 см?
Высота равностороннего треугольника равна
15√
Радиус окружности, описанной около равностороннего треугольника, равен 2√
Хорды AC и BD окружности пересекаются в точке P, BP=12, CP=15, DP=25. Найдите AP.
Какие из следующих утверждений верны?
1) Один из двух смежных углов острый, а другой тупой.
2) Площадь квадрата равна произведению двух его смежных сторон.
3) Все хорды одной окружности равны между собой.
Комментарии:
(2018-03-10 15:07:06) ПЕТЯ: центр окружности описанной около треугольника abc лежит на стороне ab НАЙДИТЕ УГОЛ АБС ЕСЛИ УГОЛ ВАС =33 РЕШУ
(2017-05-14 18:53:14) Администратор: Да, можно и так это определить.
(2017-05-13 18:44:14) : То, что треугольник прямоугольный следует из теоремы: вписанный угол, опирающийся на диаметр, равен 90 градусам