ОГЭ, Математика. Геометрия: Задача №4D5C0E | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4D5C0E

Задача №23 из 1084
Условие задачи:

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Решение задачи:

Проведем следующие отрезки (как показано на рисунке 2):
1) Из точки О2 к точке касания окружности и продолжения стороны ВС. (точка Р)
2) Из точки О1 к точке касания окружности и продолжения стороны ВС. (Точка К)
3) Из точки О1 к точке О2.
Заметим, что:
1) СМ=АС/2.
2) СР=СМ, по второму свойству касательной.
3) СМ=СК, по второму свойству касательной.
4) O1O2=R+r.
5) O2Р перпендикулярна BC, по первому свойству касательной.
6) O1К тоже перпендикулярна BC, по свойству касательной.
7) Из пунктов 2) и 3) следует, что СР=СК=СМ=АС/2. Тогда РК=АС/2+АС/2=АС.
Следовательно, O2Р || O1К (по свойству параллельных прямых). Отсюда следует, что О1О2РК - прямоугольная трапеция (по определению трапеции). Рассмотрим эту трапецию.
Проведем отрезок О2Е параллельный РК, а раз он параллелен РК, то в свою очередь перпендикулярен О1К и равен ему. Следовательно получившийся треугольник O1O2Е - прямоугольный.
Тогда, по теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.
Подставим известные нам данные, полученные ранее:
(R+r)2=AC2+(R-r)2. Раскрываем скобки, получаем:
R2+2Rr+r2=AC2+R2-2Rr+r2
2Rr=AC2-2Rr
4Rr=AC2
r=(AC2)/4R
r=122/4*8
r=144/4*8, r=4,5
Ответ: радиус вписанной окружности равен 4,5.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EB43A2

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №26E367

В треугольнике ABC угол C равен 90°, sinA=7/17, AC=415. Найдите AB.



Задача №6723DC

На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 9 м, высота фонаря 5 м?



Задача №221DAD

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.



Задача №19F9D1

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC.

Комментарии:


(2016-09-01 13:14:52) Администратор: Александра, можно, рисунки добавлены.
(2016-08-22 15:56:46) Александра: А можно ли посмотреть рисунок к третьему свойству касатальной?
(2015-11-29 19:15:42) Администратор: Ксения, я не понял, а в чем разница между моим решением и Вашим?
(2015-11-24 00:13:26) Администратор: Ксения, я не понял, а в чем разница между моим решением и Вашим?
(2015-11-23 13:23:00) Ксения: А так правильно?: PC=CK=CM=6 Проведем О2Е - перпендикуляр к О1К. O2РКЕ-прямоугольник ,значит О2Е=РК=12 Тогда, по теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.(R+r)2=144+(R-r)2. (R+r)2-(R-r)2=144. ((R+r)+(R-r))((R+r)-(R-r))=144 2R*2r=144 16 *2r=144 32r=144 r=4,5 .

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика